Home > Solution > Content

High Efficiency Video Coding (HEVC)/H.265

Sep 15, 2017

High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard, one of several potential successors to the widely used AVC (H.264 or MPEG-4 Part 10). In comparison to AVC, HEVC offers about double the data compression ratio at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD.

In most ways, HEVC is an extension of the concepts in H.264/MPEG-4 AVC. Both work by comparing different parts of a frame of video to find areas that are redundant, both within a single frame as well as subsequent frames. These redundant areas are then replaced with a short description instead of the original pixels. The primary changes for HEVC include the expansion of the pattern comparison and difference-coding areas from 16×16 pixel to sizes up to 64×64, improved variable-block-size segmentation, improved "intra" prediction within the same picture, improved motion vector prediction and motion region merging, improved motion compensation filtering, and an additional filtering step called sample-adaptive offset filtering. Effective use of these improvements requires much more signal processing capability for compressing the video, but has less impact on the amount of computation needed for decompression.

HEVC was developed by the Joint Collaborative Team on Video Coding (JCT-VC), a collaboration between the ISO/IEC MPEG and ITU-T VCEG. The ISO/IEC group refers to it as MPEG-H Part 2 and the ITU-T as H.265. The first version of the HEVC standard was ratified in January 2013 and published in June 2013. The second version, with multiview extensions (MV-HEVC), range extensions (RExt), and scalability extensions (SHVC), was completed and approved in 2014 and published in early 2015. Extensions for 3D video (3D-HEVC) were completed in early 2015, and extensions for screen content coding (SCC) were completed in early 2016 and published in early 2017, covering video containing rendered graphics, text, or animation as well as (or instead of) camera-captured video scenes.

HEVC contains technologies covered by patents owned by the organizations that participated in the JCT-VC. Implementing a device or software application that uses HEVC may require a license from HEVC patent holders. The ISO/IEC and ITU require companies that belong to their organizations to offer their patents onReasonable and non-discriminatory licensing (RAND) terms. Patent licenses can be obtained directly from each patent holder, or through patent licensing bodies, such as MPEG LA, HEVC Advance, and Velos Media. The combined licensing fees currently offered by all of the patent licensing bodies are higher than for AVC. The licensing fees are one of the main reasons HEVC adoption has been low on the web and is why some of the largest tech companies (Amazon, AMD, ARM, Cisco,Google, Intel, Microsoft, Mozilla, Netflix, Nvidia, and more) have joined the Alliance for Open Media,which aims to finalize the royalty-free alternative video coding format AV1 by the end of 2017.


HEVC was designed to substantially improve coding efficiency compared with H.264/MPEG-4 AVC HP, i.e. to reduce bitrate requirements by half with comparable image quality, at the expense of increased computational complexity. HEVC was designed with the goal of allowing video content to have a data compression ratio of up to 1000:1. Depending on the application requirements, HEVC encoders can trade off computational complexity, compression rate, robustness to errors, and encoding delay time. Two of the key features where HEVC was improved compared with H.264/MPEG-4 AVC was support for higher resolution video and improved parallel processing methods.


HEVC is targeted at next-generation HDTV displays and content capture systems which feature progressive scanned frame rates and display resolutions from QVGA (320x240) to 4320p (7680x4320), as well as improved picture quality in terms of noise level, color spaces, and dynamic range.